Simulation of Surface Plasmon Excitation in a Plasmonic Nano-Wire Using Surface Integral Equations

Document Type : Articles

Authors

1Department of physics, Malayer University, Malayer, Iran.

Abstract

In this paper, scattering of a plane and monochromatic electromagnetic wave from a nano-wire is simulated using surface integral equations. First, integral equationsgoverning unknown fields on the surface is obtained based on Stratton-Cho surface integral equations. Then, the interaction of the wave with a non-plasmonic as well as a palsmonic nano-wire is considered. It is shown that in scattering of the wave from the non-plasmonic nano-wire the simple phenomena of refraction and transmission occur. On the other hand, the interaction of TM polarized light with plasmonic nano-wire excites surface plasmon waves. Simulations show that no surface plasmon is excited in interaction of TE polarized light with plasmonioc nano-wire. It is observed that, while increasing the frequency of incident light, the regime of scattering goes from electrostatic limit to simple geometric limit through diffraction region. In continuation, charge distribution induced by surface plasmon is simulated for different times. The simulation shows that a wave-like surface charge is excited and propagates on the surface.There is a very weak charge distribution within the nano-wire indicating that no light penetrates the wire.

Keywords


[1]     M. A. Garcia,Surface Plasmons in metallic nanoparticlesandFundamentals applications.J. Phys. D: Appl. Phys. October 20,  44 ( 28) (2011) 1-43.
[2]      S. A.Maier. Plasmonics: Fundamentals and Applications. Springer. New York : 2007.
[3]     L.  Debin, C. Z.Ning. All-semiconductor active plasmonic system in mid-infrared wavelengths. Optics Express. 19 (15) (2011) 14594-14603.
[4]     N. Peyghambarian,W.Koch,  A. Mysyrowicz.Introduction to semicunductor optics.   University of Michigan. Prentice Hall, London, 1993.
[5]     D.  Jung, J. Kim, Ch. Nahm, H. Choi, S. Nam,  B. ParkReview Paper: Semiconductor Nanoparticles with Surface Passivation and Surface Plasmon.  E. M. L. 7 (2011)  185-194.
[6]     E.  C. DreadenR. D. NearT. AbdallahM. H. Talaat ,  M. A. El-Sayed. Multimodal plasmon coupling in low symmetry gold nanoparticle pairs detected in surface-enhanced Raman scattering. Appl. Phys. Lett.  98  (2011).
 
[7]     N. Bi, M. Hu, Y. Tianc, H. Zhangc, M. Hu, H. Qic, H. Zhua .Determination of 6-thioguanine based on localized surface plasmon resonance of gold nanoparticle. Spectrochim ActaA Mol Biomol Spectrosc. Elsevier B.V., 107  (2013)  24–30.
[8]      J. Jung,  T. G. PedersenT. Søndergaard, K. Pedersen. Electrostatic plasmon resonances of metal nanoparticles in stratified geometries.Proceedings of the SPIE, 7757 (2010 ) 1-11.
[9]     I. D. Mayergoyz, D. R. Fredkin, Z. Zhang.Electrostatic (plasmon) resonances in nanoparticles. Phys. Rev. B. 155412  (72 )(2005) 1-15.
[10]   D. Zhang, A. Horneber, U. Heinemeyer, K. Braun, F. Schreiber, R. Scholz, A.J. Meixner. Plasmon resonance modulated photominescence and Raman spectroscopy of diindenoperylene organic semiconductor thin film.  JOL. Elsevier. 131(2010) 502–505.
[11]  D.V. GuzatovV.V. KlimovM.Yu. Pikhota.Plasmon Oscillations in Ellipsoid Nanoparticles: Beyond Dipole Approximation. Laser Physics. Original Russian. 20 ( 1) (2009)  85–99.
[12]  M.V. Rigoa, J. Seoa, W. Kimb, S. Jung.Plasmon coupling of R6G-linked gold nanoparticle assemblies for surface-enhanced Raman spectroscopy. Vib. Spectrosc. Elsevier .57 (2011) 315– 318.
[13]  K. A. Willets,  R. P. Van Duyne.Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem.: The Annual Review of Physical Chemistry, 58 (2007) 267–297.
[14]  A. Arbabi. Terahertz Surface Plasmon Polariton-like Surface Waves for Sensing Applications.  Ph.D thesis,University of Waterloo,Ontario,Canada,  2009.
[15]  J. Fischer. Near-field mediated Enhancement Effects on Plasmonic Nanostructures. Mainz : Johannes Gutenberg-Universiy, 2010.
[16]  S. Lal, S. Link,N. J.  Halas.Nano-optics from sensing to waveguiding. Nature photonics.  Nature Publishing Group, 1 (2007 ) 641-648.
[17]  Lindquist,  N. Charles. Engineering metallic nanostructures for surface plasmon resonance sensing.  Ph.D. Dissertation, Major: Electrical Engineering,University of Minnesota. 2010.
[18]  M. Frederiksen. Plasmon Hybridization and Symmetry Breaking. Interdisciplinary Nanoscience Center. Ph.D Thesis,  Aarhus University, 2013.
[19]  H. Horvath.Gustav Mie and the scattering and absorption of light by particles: Historic development and basics. J. Quant Spectrosc Ra Transfer. Elsevier, 110 (11) (2009) 787–799.
[20]  B. S. Luk’yanchuk,M. I. Tribel’ski,V. V. Ternovski. Light scattering at nanoparticles close to plasmon resonance frequencies. J. Opt. Technol. Optical Society of America. 73 (6)(2006) 371-377.
[21]  A. O.Govorov, J. Lee, N. A.Kotov. Theory of plasmon-enhanced Förster energy transfer in optically-excited semiconductor and metal nanoparticles. Phys. Rev. B. The American Physical Society, 76, 125308, (2007).
[22]  A. O. GovorovG. W. BryantW. Zhang, T. SkeiniJ. LeeN. A. Kotov, J. M. SlocikR. R. Naik .Exciton-Plasmon Interaction and Hybrid Excitons in Semiconductor-Metal Nanoparticle Assemblies.Nano Letters, 6 (2006) 984-994.
[23]  M. Fathi Sepahvand, M. Rezvani Jalal, Analytical and numerical simulation of potential and field distribution near plasmonic clusters, 2nd national conference on nano from theory to application, Isfahan 1392.
[24]  M. Fathi Sepahvand, M. Rezvani Jalal, Numerical calculation of resonant frequencies of three-body plasmonic clusters, National conference on nano in science and engineering, Malayer 1393.
[25]  K. Yee. Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media. IEEE Trans. Antennas. Propag. 14 (1966) 302-307.
[26]  M. K. Oh, S. Park, S. K. Kim, S. Lim. Finite Difference Time Domain Calculation on Layer-by-Layer Assemblies of Close-Packed Gold Nanoparticles. J. Compt. Theor. Nanoscience.7 (2010) 1-10.
[27]  B. T.Draine, P. J.Flatau.Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am, April 11(4) (1994) 1491-1499.
[28]  J. Liaw. Analysis of the surface plasmon resonance of a single core-shelled nanocomposite by surface integral equations. Eng Anal Bound Elem. Elsevier, 30 (2006) 734–745.
[29]  J. Liaw, New surface integral equations for the light scattering of multi-metallic nanoscatterers. Eng Anal Bound Elem. Elsevier, 31 (2007) 299–310.
[30]  J. Liaw, Simulation of surface plasmon resonance of metallic nanoparticles by the boundary-element method. J. Opt. Soc. Am. A. Optical Society of America, 23 (1)(2006) 108-116.
[31]  M. Fathi Sepahvand, M. Rezvani Jalal, Simulation of Light Scattering from a Plasmonic Nano-Wire Using Surface Integral Method, PSI, Zahedan1393.
[32]   G. B.Arfken,H. J. Weber, F. E. Harris.Mathematical Methods For Physicists: A Comprehensive Guide. Seventh Edition. Waltham, Ma 02451, Usa. Elsevier Inc., 2013.